Complexity Reduction for Video Surveillance Systems

Hyuk-Jae Lee

Seoul National University 2016, 12, 05

Contents

- Intelligent Video Cameras
- Power consumption in video cameras
- Reduction of complexity/power consumption
- Future trends

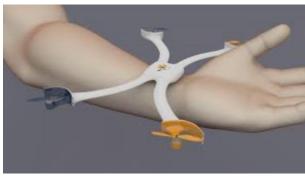
Video Cameras

CC-TVs

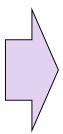
Inside car

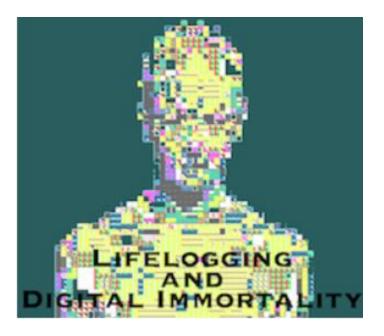
Drone camera

sports camera


Badge camera

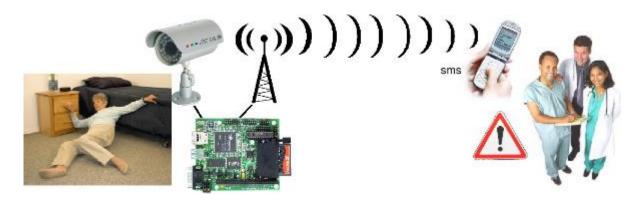
Video Cameras (2): Selfie Drone



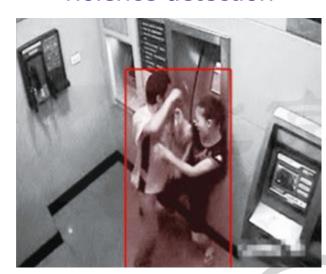


Video Cameras (3)

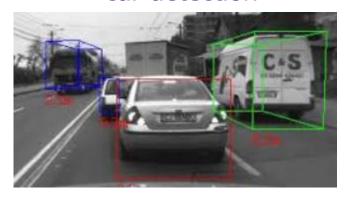
- Life logger: continuously record visual experience
- 1 Mega bit/second x ~10 Mega seconds/year = ~ 10 Tera bits/year



Video Analysis in CC-TV


Fall detection

Intrusion/thief detection



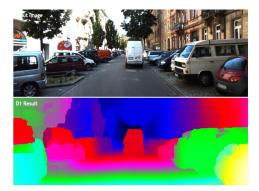
violence detection

Video Analysis by camera for a car

car detection

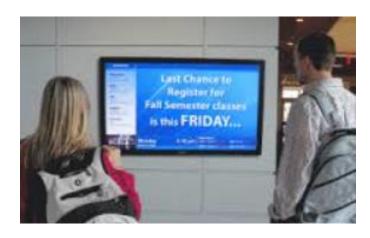
pedestrian detection

drowsiness


Traffic signal detection

lane detection

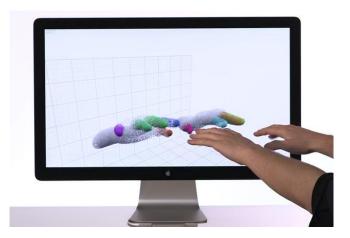
distance detection



Human detection application

Head count analysis

Digital signage: estimate its effectiveness



Video mining: in-store behavior analysis

Hand gesture recognition

Contents

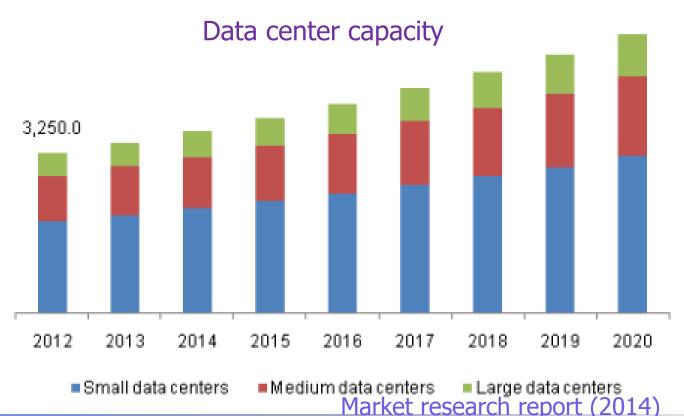
- Intelligent Video Cameras
- Power consumption in video cameras
- Reduction of complexity/power consumption
- Future trends

CC-TV Data

- What data to store? What data to process?
- Where to store ? Where to process?

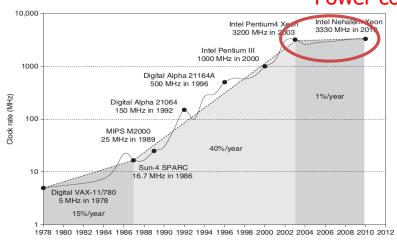
Cloud center?

Power consumption of Big Data Processing

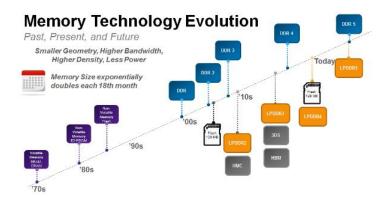

Go competition: Human vs AI (2016. 3)

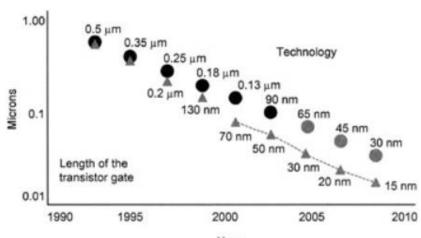
Power Consumption by Data Centers

- 70 billion kilo watts-hour consumed by data centers in the US (2014)
 - 2% of total power consumption of US
 - Equivalent to 6.4 million homes



Technology Evolution




Limited by Power consumption

Semiconductor Technology Shrink



DRAM capacity

Communication bandwidth

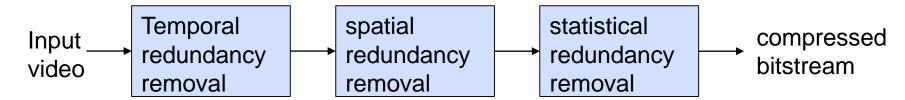
Contents

- Intelligent Video Cameras
- Power consumption in video cameras
- Reduction of complexity/power consumption
- Future trends

CC-TV Data

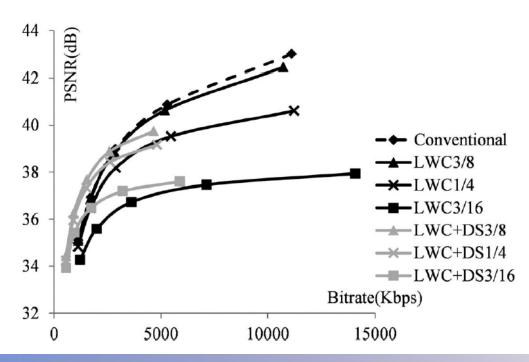
- What data to store? What data to process?
- Where to store? Where to process?

Cloud center?



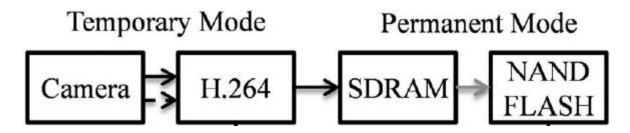
Video compression

- Reduce the amount of data by 1/50 ~ 1/200
 - Reduce the storage space for local storage or
 - reduce communication bandwidth for remote data transfer
- Basic idea: remove redundant data → reconstruct the original data without the removed data



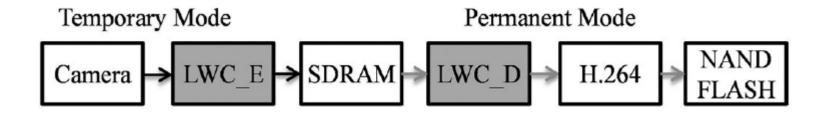
- Temporal redundancy removal
 - Compare with previous frames
 - Most effective
- Spatial redundancy removal
 - Compare with neighboring blocks in the same frame
- Statistical redundancy removal: use entropy coding

Evaluation of coding efficiency


- R-D (Rate-Distortion) Curve
 - PSNR (vertical axis): quality of video (estimation of distortion)
 - Bit rate (horizontal axis): data size (compression ratio)
- Trade-off between PSNR (distortion) and bit rate (data size)
- The coding efficiency is better if it is higher in all bit rate

Additional data reduction

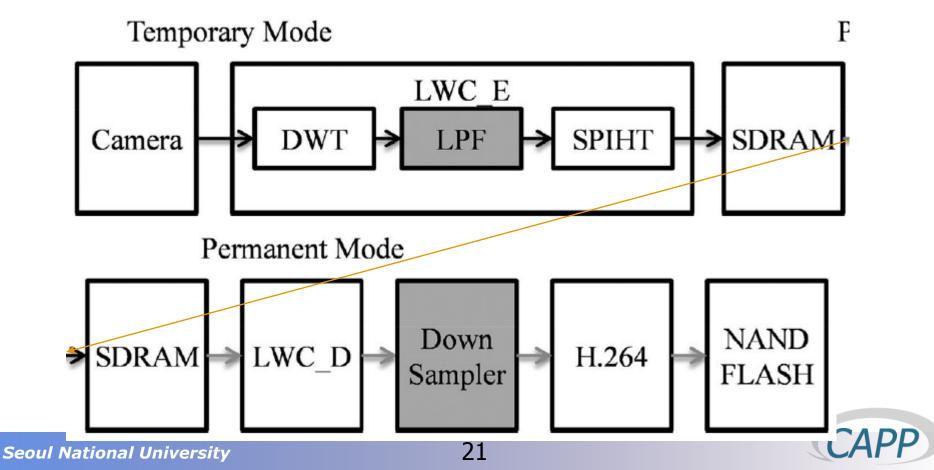
- Temporary mode: camera → video compression → DRAM
 - Camera input captured and compressed continuously
- Permanent mode: DRAM → Flash memory
 - Important event detected, the DRAM data are stored in flash


H.264: popular video compression standard

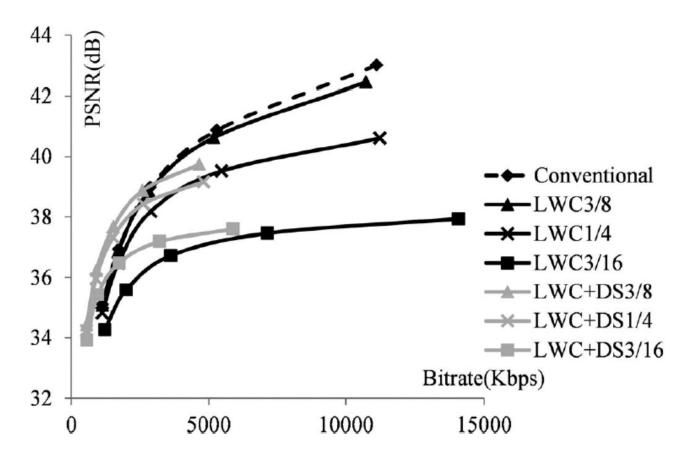
- Inefficiency:
 - video compression is complex demanding large power consumption

Computation complexity reduction

- Light-weight compression:
 - Less complex than standard video compression
 - Less efficient in compression
 - □ Target compression ratio: ½ 1/10
 - □ Standard video compression: >> 1/10

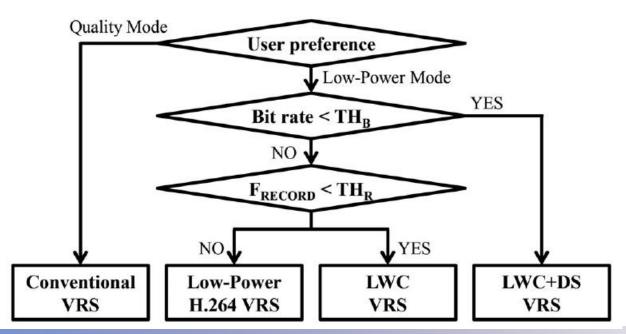


- Temporary mode: Camera → LWC encoder → SDRAM
- Permanent mode: DRAM → LWC decoder → standard encoder → flash


Reduction in the permanent mode

- LWC behaves as low-pass filter
- Down-sampling does not cause a significant loss of video quality
 - Reduced image size → reduced power consumption

Evaluation of down-sampling


- Down-sampling some cases give higher quality
 - Effective for low bit rate

Operating Mode Selection

- TH: Thresholds for mode decision
- Frecord: The frequency of the permanent mode
- Low power H.264: low-complexity H.264 with reduced compression efficiency
- LWC VRS: use of LWC in the temporary mode
- LPF+DS VRS: used of down-sampling in the permanent mode

Simulation Results

Power consumption breakdown

POWER CONSUMPTION BY HARDWARE MODULE

	P ₂₆₄	$P_{\rm LWCE}$	P _{LW C D}	P _{DOWN}
Power (mW)	97.88	10.89	15.36	13.64

External memory access

EXTERNAL BANDWIDTH FOR EACH COMPRESSION TYPE

	H.264/AVC	LWC	LWC + DS
Compression ratio	1/100	3/8	1/4
One pixel size (bits)	12	16	16
Out stream size per second (Mbits)	3.24	162	108
Memory write per second (Mbits)	648	0	0
Memory read per second (Mbits)	972	0	0

Simulation Results (2)

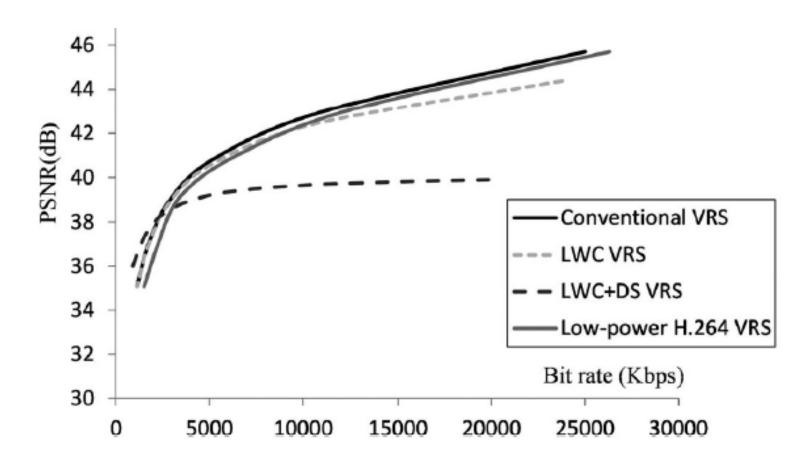
Power consumption

POWER CONSUMPTION OF EACH MODE FOR EACH VRS

Video Recording Systems	Mode	$P_{264}(mW)$	$P_{\rm LWCE}(mW)$	$P_{\rm LWCD}(mW)$	$P_{\mathrm{D}\mathrm{O}\mathrm{W}\mathrm{N}}\left(m\mathrm{W}\right)$	$P_{\mathrm{SDRAM}}\left(mW\right)$	$P_{\rm NAND}(mW)$	$P_{\text{M O D E}}(mW)$	P _{SAVING} (m
Conventional VRS	Temporary	97.88				236.34		334.22	_
	Permanent					65.83	5.72	71.55	_
LWC VRS	Temporary		10.89			83.99		94.88	239.34
	Permanent	97.88		15.36		189.54	5.57	308.35	-236.8
LWC + DS VRS	Temporary		10.89			81.07		91.96	242.26
	Permanent	24.47		15.36	13.64	107.4	4.71	165.58	-94.03
Low-power H.264 VRS	Temporary	60.94				165.23		226.17	108.05
	Permanent					65.88	6.72	72.6	-1.05

Simulation results (3)

Effect of the frequency of the permanent mode


POWER CHANGES ACCORDING TO CHANGES IN FRECORD

F_{RECORD}	Powe	er Cons	sumption (mW	Power Gain (%)			
(%)	Conventional	LWC	LWC + DS	LP H.264	LWC	LWC +DS	LP H.264
0	334.2	94.9	92.0	226.2	71.6	72.5	32.3
5	337.8	110.3	100.2	229.8	67.3	70.3	32.0
10	341.4	125.7	108.5	233.4	63.2	68.2	31.6
20	348.5	156.6	125.1	240.7	55.1	64.1	30.9
25	352.1	172.0	133.4	244.3	51.2	62.1	30.6
30	355.7	187.4	141.6	248.0	47.3	60.2	30.3
40	362.8	218.2	158.2	255.2	39.9	56.4	29.7
50	370.0	249.1	174.8	262.5	32.7	52.8	29.1
60	377.2	279.9	191.3	269.7	25.8	49.3	28.5
70	384.3	310.7	207.9	277.0	19.1	45.9	27.9
75	387.9	326.1	216.1	280.6	15.9	44.3	27.7
80	391.5	341.6	224.4	284.3	12.7	42.7	27.4
90	398.6	372.4	241.0	291.5	6.6	39.5	26.9
100	405.8	403.2	257.5	298.8	0.6	36.5	26.4

Simulation results (4)

Compression efficiency

Simulation results (5)

Relationship Between the BDPSNR and the Power Saving When $F_{\rm RECORD}$ is 10%

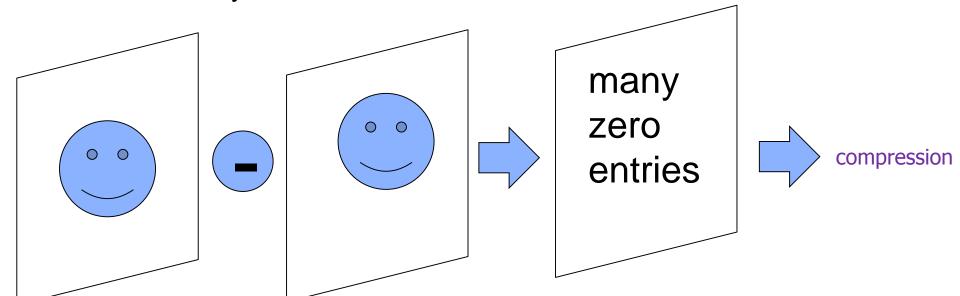
$F_{RECORD}=10\%$	L	ow Target Bit	rate	Н	ligh Target Bit	trate
	LWC	LWC + DS	LP H.264	LWC	LWC + DS	LP H.264
BDPSNR(dB) PS(%) BDPSNR/PS	-0.031 63.2 -0.049	0.07 68.2 0.103	-0.313 31.6 -0.991	-0.323 63.2 -0.511	-2.202 68.2 -3.229	-0.165 31.6 -0.522

TABLE VII RELATIONSHIP BETWEEN THE BDPSNR AND THE POWER SAVING WHEN $F_{\rm RECORD}$ is 70%

$F_{\rm RECORD}=70\%$	L	ow Target Bit	rate	Н	ligh Target Bit	trate
	LWC	LWC + DS	LP H.264	LWC	LWC + DS	LP H.264
BDPSNR(dB) PS(%) BDPSNR/PS	-0.031 19.1 -0.162	0.07 54.9 0.128	-0.313 27.9 -1.122	-0.323 19.1 -1.691	-2.202 54.9 -4.011	-0.165 27.9 -0.591

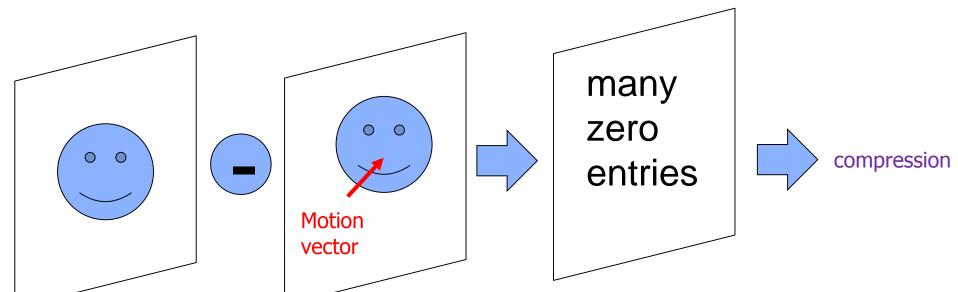
Background subtraction w/ compression

- Background subtraction:
 - an important step for object detection
 - Reduce complexity/data in the background
- Avoid the complexity for background subtraction
 - Use the information obtained from video compression



Information from Video Compression

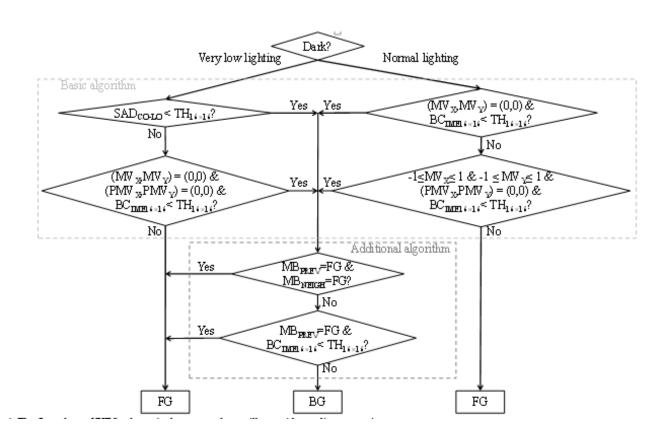
- To remove the temporal redundancy,
 - (current frame previous frame) is obtained
 - Many '0's in this subtracted frame



previous frame

current frame

Information from Video Compression

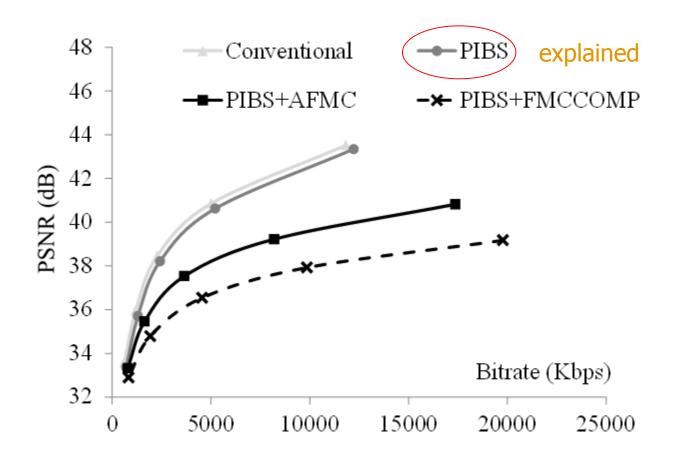

- To make more zeros in the subtracted frame,
 - Find the best matching position
 - ☐ This is called "motion vector"

- The motion vector and matching errors are used to detect the background
 - Background: no motion and little matching error

Algorithm and Results

THE RATIOS OF FALSE-NEGATIVE AND FALSE-POSITIVE ERRORS

False-negative (%)	False-positive (%)
0.981	0.48


Video Coding Complexity Adjustment

- Background area:
 - May sacrifice video quality
 - Less efficiency compression algorithm
 - Less complex compression algorithm
- Coding options: Skip some coding options
 - FME (Fractional Motion Estimation): ¼ pixel precision for motion information derivation
 - IP (Intra-frame Prediction): removal of spatial redundancy

Classification	Coding option for the MB _{CURR}
Strong FG (M3)	Regular (FME & IP)
Object Boundary (M2)	Only IP
Uncovered BG (M1)	Only IP
Strong DG (M0)	SKIP mode
Strong BG (M0)	(Skip both FME and IP)

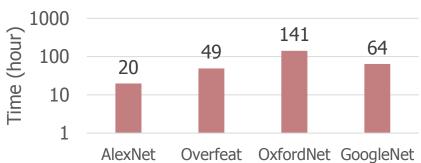
Compression Efficiency

Contents

- Intelligent Video Cameras
- Power consumption in video cameras
- Reduction of complexity/power consumption
- Future trends

Data Explosion

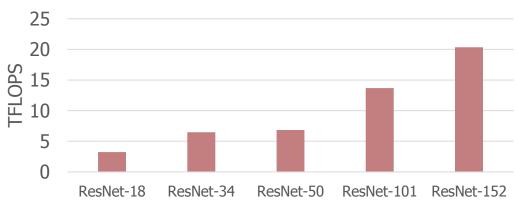
(source) 2016, IDF2016 keynote



Deep Learning Complexity

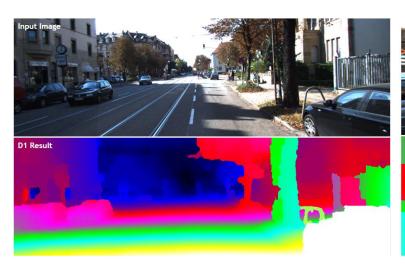
Training Time

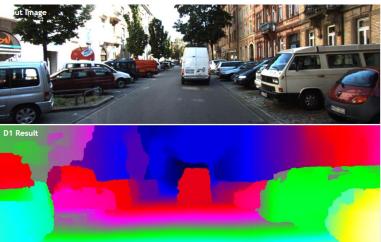
Estimated training time


(w/o ensemble and augmentation)

Inference Time

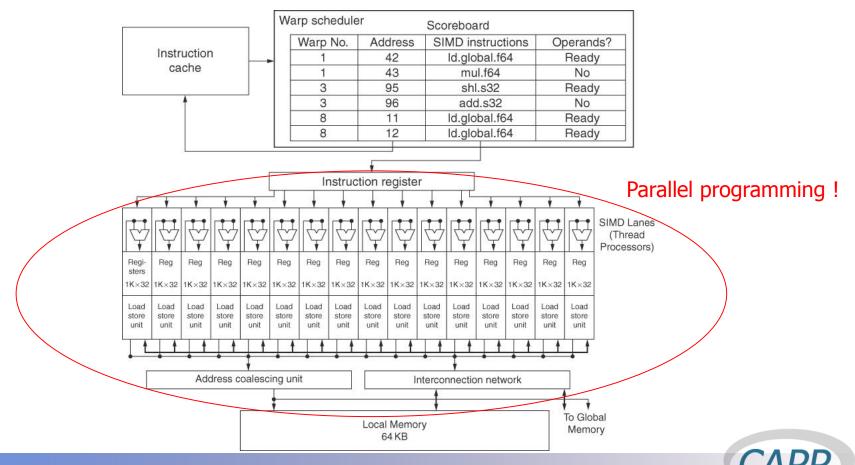
Estimated TFLOPS for 30-fps inference

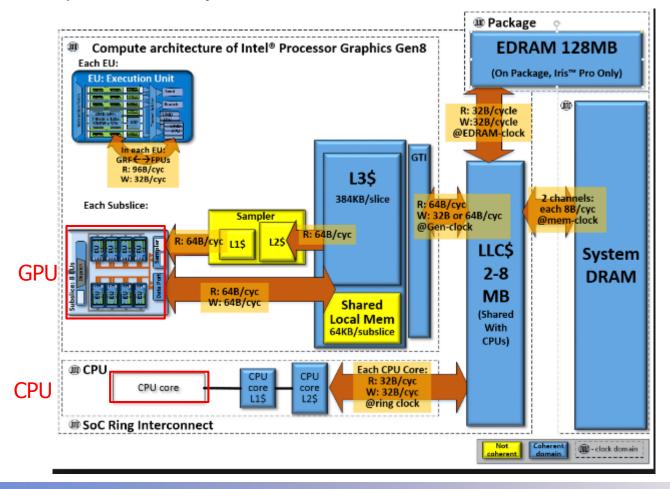

(with ensemble and augmentation)



Distance generation complexity

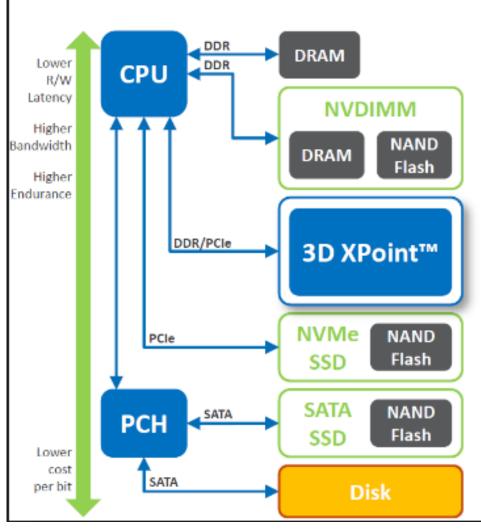
								/	
	Method	Data	Code	D1-bg	D1-fg	<u>D1-all</u>	Density	Time	Environment
1	Displets v2		<u>code</u>	3.00 %	5.56 %	3.43 %	100.00 %	265 s	>8 cores @ 3.0 Ghz (Matlab + C/C++)
F. Gu	F. Guney and A. Geiger: Displets: Resolving Stereo Ambiguities using Object Knowledge. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.								
2	CNNF+SGM			2.78 %	7.69 %	3.60 %	100.00 %	71 s	GPU @ 2.5 Ghz (Python)
Anon	ymous submission								
3	<u>PBCP</u>			2.58 %	8.74 %	3.61 %	100.00 %	68 s	Nvidia GTX Titan X
A. Se	A. Seki and M. Pollefeys: Patch Based Confidence Prediction for Dense Disparity Map. British Machine Vision Conference (BMVC) 2016.								
4	MC-CNN-acrt		<u>code</u>	2.89 %	8.88 %	3.89 %	100.00 %	67 s	Nvidia GTX Titan X (CUDA, Lua/Torch7)
J. Zt	ontar and Y. LeCun: St	tereo Match	ring by Tra	aining a Conv	olutional Ne	ural Network	to Compare I	maxe Patches.	. Submitted to JMLR .




Architecture complexity

- GPU can easily make 10x speed-up
- However, you need to understand its architecture

Intel CPU+GPU Architecture


- Intel Gen8 Architecture:
 - Complex memory architecture to share data between CPU & GPU

Complex memory hierarchy outside CPU

Server architecture

Conclusions

- Huge amount of data processing
 - Need to reduce the amount of data to be stored or transmitted
 - Requires complex computation to find redundancy
 - □ Trade off between data amount and computation complexity
 - □ Need to reduce the computation complexity
- Complex computer architecture for fast data processing
 - → Efficient use of complex architecture is important
- Video compression is a good example

Appendix

Global Research Network Program

- Support research activities for international collaboration
 - KRW: USD ~ 1000:1

	2015	2016
Total fund	6.6 billion KRW (~6.6 million USD)	75.9 billion KRW
# of new projects	1 (89 million KRW)	26 (3, 115 million KRW) 119 million KRW/project
period	1 ~ 3 years	2 ~ 3 years
subject	Korea-china network	Social science/liberal art

Additional programs for one-to-one collaboration

