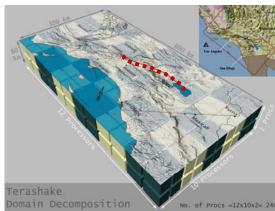
Parallel Visualization on Display Wall

Pacific Rim Applications and PRAGMA Institute

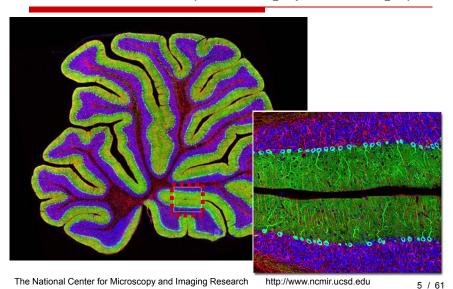
Outline

- □ Problem Statement & Motivation
- □ Large-Scale Rendering
 - Sorting classification (sort-first, sort-middle, sort-last)
 - Sort-first rendering (Visualization on HIPerWall)
 - Sort-last rendering (Distributed Parallel Terrain Rendering)
- Conclusions


2 / 61

Problem Statement

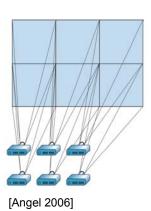
- ☐ Size of datasets are growing rapidly
 - scientific simulations
 - medical imaging
 - hundreds of millions of data points and polygons


Large Data Example - Terashake

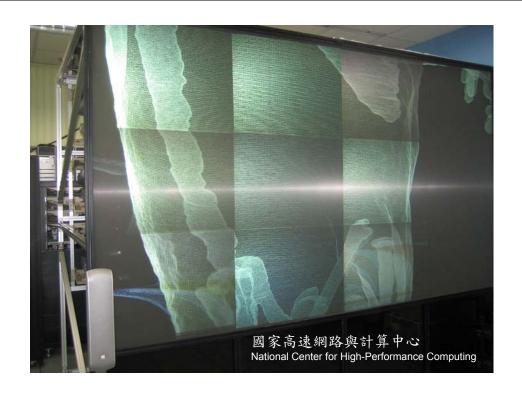
- ☐ Simulate ruptured a magnitude 7.7 earthquake
- ☐ Simulate 230 km section of the San Andreas fault
- ☐ Simulate 600x300x80 km region in southern CA
- □ 3000x1500x400 mesh (1.8 billion cubes) (200 meters resolution)
- Simulate 3 minutes, 20,000 time steps, $\Delta t = 0.011$ sec
- 240 processors on SDSC DataStar
- □ 5 days, 20,000 CPU hours
- ☐ Yielding 47 TB of data

http://users.sdsc.edu/~amit/web/viz/terashake quake

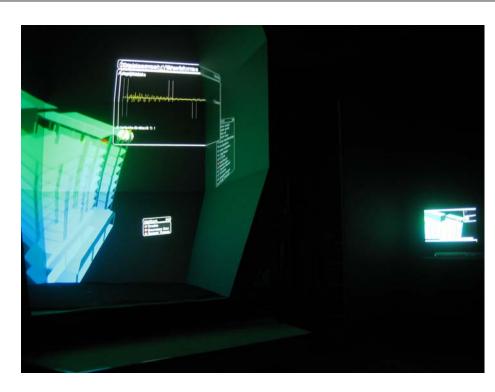
Rat Cerebellum (300 Megapixel Image)


Motivation

- ☐ Large datasets presents challenges
 - How to render this many polygons when the highest resolution of a 30-inch LCD is only 4 mega-pixel (2560x1600)?
 - How to render them interactively?
 - Need to render large amount of geometry faster than highend graphics system


6 / 61

Solution to Display-Resolution Problem


- ☐ Build a large display wall with:
 - an array of projectors (projectors suffer from edge light taper problem)
 - an array of LCD panels (LCDs suffer from small separations between panels, windowing effects)

Advantage of LCDs

Advantage

- color correction is easier
- less expensive
- easy to setup, take less space, flexibility layout
- offer higher resolution in unit area than projectors

Disadvantage

- has borders between each tile
- the highest resolution of a 30-inch LCD is 2560x1600

14 / 61

Advantage of Projectors

Advantage

- highest resolution projector (SONY SRX-R105) is 4096x2160
- large area display, achieve fully immersive
- seamless

Disadvantage

- expensive and high maintaining cost
- high power consumption
- noise

Solution to Display-Resolution Problem

- □ Use clusters of computers
 - connected with network
 - each computer has its graphics hardware
 - advantage is low cost
 - achieve high-performance computing
- ☐ There are multiple ways to <u>distribute the work</u> that must be done to render a scene among the processors

15 / 61 16 / 61

Outline

- □ Problem Statement & Motivation
- ☐ Large-Scale Rendering
 - Sorting classification (sort-first, sort-middle, sort-last)
 - Sort-first rendering (Visualization on HIPerWall)
 - Sort-last rendering (Distributed Parallel Terrain Rendering)
- Conclusions

High-Level View of the Graphics Process

Input: 3D vertices

Output: 2D pixels

Fig: Graphics Process. (Source: [Angle 2006])

17 / 61

18 / 61

Tasks of Graphics System

☐ A commodity card with a single GPU as a combination of one geometry processor and one raster processor

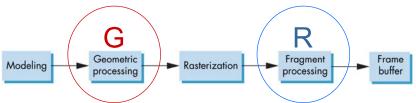


Fig: Graphics Process. (Source: [Angle 2006])

- Transformations
- □ Scan conversion
- Polygon clipping
- **Texture**
- Backface culling
- ☐ Fog

- Shading
- Viewport mapping

Visual Description of Graphics Pipeline

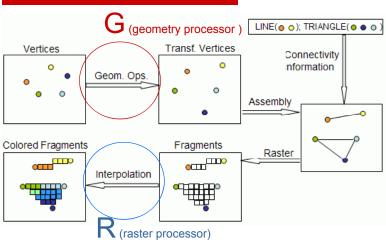


Fig: Visual description of the pipeline stages of a graphics system. (Source: [Lighthouse3D])

Three Possibilities to Distribute Jobs

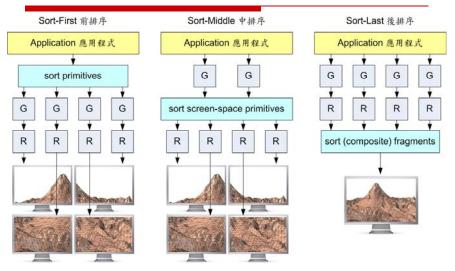
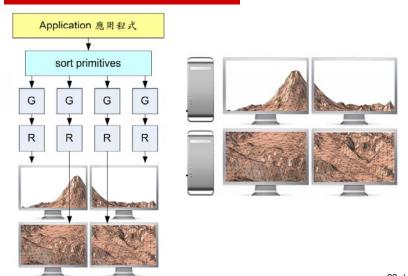
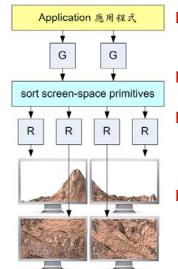



Fig: Sorting classification. [Molnar et al. 1994]

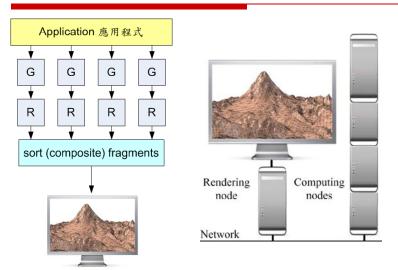
21 / 61

Sort-First Rendering



22 / 61

Sort-First Rendering


- ☐ Pair geometric and raster processors and use standard PCs with standard graphics cards
- ☐ Assign a separate portion of the display to each PC
- ☐ Front-end sort to make assignment as to which primitives go to which PC
- ☐ If a primitive straddles more than one region of the display, it can be sent to multiple geometry processors
- □ Load-balancing is not addressed
- ☐ It is ideally suited for generating high-resolution displays

Sort-Middle Rendering

- ☐ High-end graphics workstations with <u>special hardware</u> and fast internal buses
- ☐ An application generates a large number of geometric primitives
- Sort the <u>outputs of the geometry</u> <u>processors</u> and <u>assign</u> <u>primitives to the correct raster</u> processors
- Load balancing
 - Assign each raster processors to a different region of the frame buffer

Sort-Last Rendering

Sort-Last Rendering

- □ Each geometry processor is connected to its own raster processor (as standard PCs, each with its own graphics card)
- ☐ Each raster processor must have a <u>frame buffer</u> that is the full size of the display
- ☐ Each pair produces a correct <u>hidden-surface-removed</u> <u>image</u> for part of the geometry
- ☐ Combine the partial images with a compositing step
- □ Need both information in the <u>color buffers</u> and the depth-buffer

25 / 61 26 / 61

Example of Sort-Last Rendering

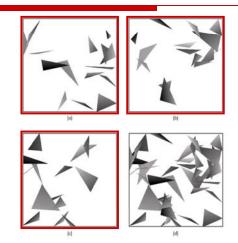


Fig: (a)–(c) Partial renderings, each of which has a correct <u>hidden-surface-removed image</u> for part of the geometry . (d) Composited image. [Angel, 2006]

Outline

- □ Problem Statement & Motivation
- ☐ Large-Scale Rendering
 - Sorting classification (sort-first, sort-middle, sort-last)
 - Sort-first rendering (Visualization on HIPerWall)
 - Sort-last rendering (Distributed Parallel Terrain Rendering)
- Conclusions

27 / 61 28 / 61

Display Wall

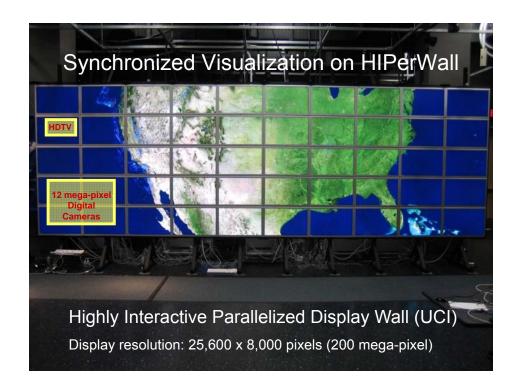
□ HIPerWall

■ Number of tiles: 50 (30-inch LCDs)

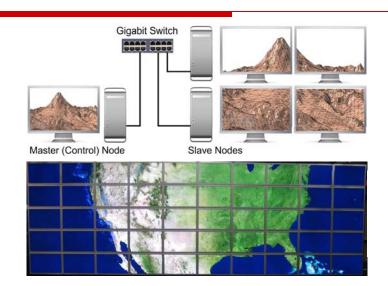
■ Resolution: 25,600 x 8,000 pixels (200 mega-pixel)

□ HIPerSpace

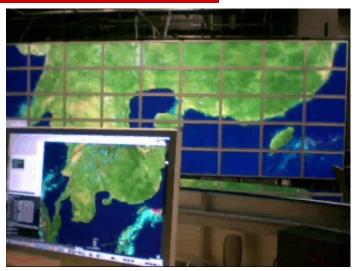
■ Number of tiles: 70 (30-inch LCDs)


■ Resolution: 35,840 x 8,000 pixels (286 mega-pixel)

□ HIPerDisplay

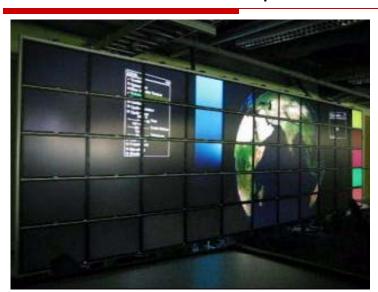

■ Number of tiles: 20 (24-inch LCDs)

Resolution: 9,600 x 4,800 pixels (46 mega-pixel)


29 / 61

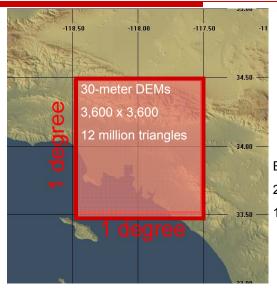
Visualization on HIPerWall

Visualization on HIPerWall



31 / 61 32 / 61

Visualization on HIPerSpace



Outline

- □ Problem Statement & Motivation
- □ Large-Scale Rendering
 - Sorting classification (sort-last, sort-middle, sort-first)
 - Sort-first rendering (Visualization on HIPerWall)
 - Sort-last rendering (Distributed Parallel Terrain Rendering)
- Conclusions

38 / 61

Digital Elevation Models (DEMs)

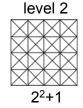
Entire United States 216,000 x 84,000 180 billion triangles

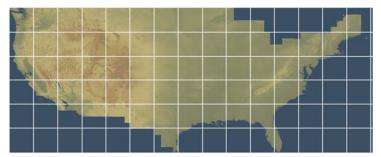
Traditional Methods Do not Scale

- Out-of-core processing
 - reorganize data layout, however, size increased dramatically
- ☐ Memory is the bottleneck
 - block size must be $2^n+1 \times 2^n+1$, n = 0,1,2,3,...
 - limitation: up to 4,097 x 4,097

level 0

level 1

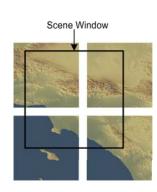


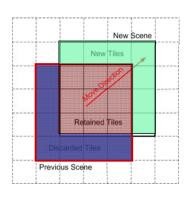

Table: Required memory size.

n	Dimension	Memory Size
11	2049x2049	214 (MB)
12	4097x4097	854
13	8193x8193	3,414

39 / 61

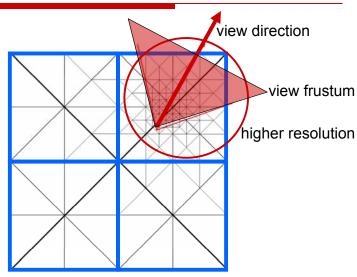
Divide Terrain into Blocks


- USGS 1-degree DEMs
 - **72,000x28,800**
 - divide into 90 blocks
 - each block is 4,097x4,097



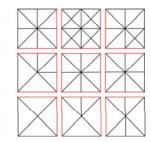
41 / 61

Dynamic Block Management


- ☐ Windowing of visible scene [Gross 1995]
 - do not load entire terrain, discard invisible blocks

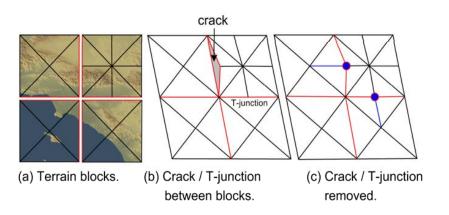
42 / 61

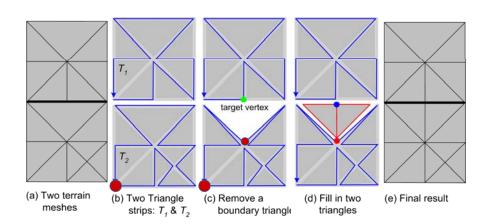
View-Dependent Mesh Refinement



Block is Represented by a Mesh

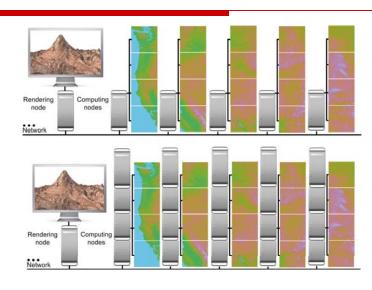
- ☐ Blocks may have different level-of-detail
- □ Discontinuity must be solved!



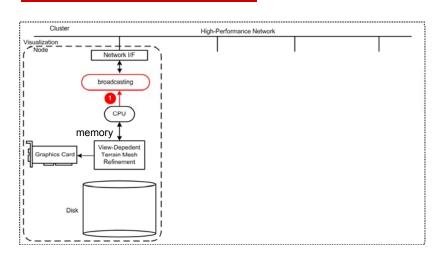


43 / 61 44 / 61

Crack and T-Junction

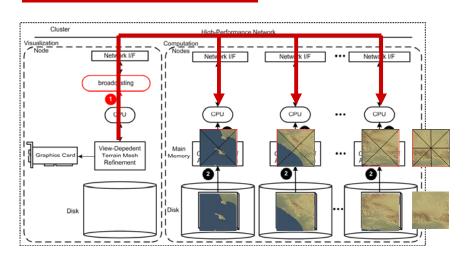


Crack Removal Algorithm

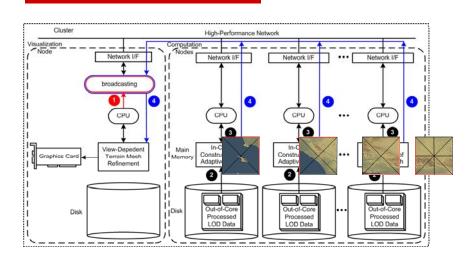


45 / 61 46 / 61

5 servers vs. 20 servers

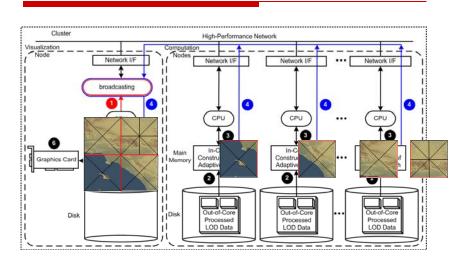


Data Flow

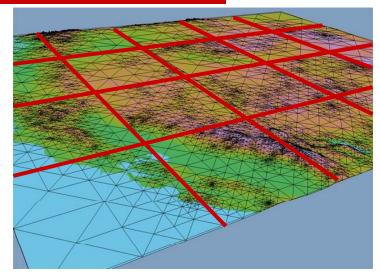


47 / 61 48 / 61

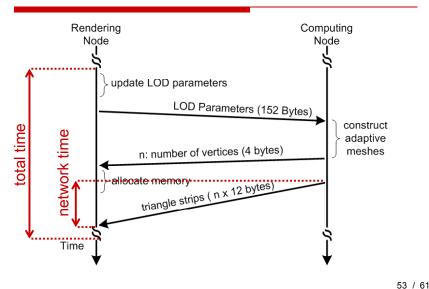
Computing Nodes Construct Mesh



Meshes Sent to Rendering Node



49 / 61 50 / 61


Combine Meshes & Crack Removal

Visualization of 20 Terrain Blocks

Socket Communication (TCP/IP)

Outline

- Problem Statement & Motivation
- □ Large-Scale Rendering
 - Sorting classification (sort-last, sort-middle, sort-first)
 - Sort-first rendering (Visualization on HIPerWall)
 - Sort-last rendering (Distributed Parallel Terrain Rendering)
- ☐ Conclusions

54 / 61

Conclusions

- Sort-first rendering
 - A tiled display system on HIPerWall based on socket messages
- Sort-last rendering
 - A distributed parallel terrain rendering method that outperforms old methods in rendering capacity
- Interactive visualization
 - is made possible with distributed parallel processing, out-ofcore management, level-of-detail refinement
 - aids in interpreting complex large-scale datasets
 - highlights characteristics otherwise difficult to pinpoint

References

- Jan P. Springer, Christoph Sladeczek, Martin Scheffler, Jan Hochstrate, Bernd Frohlich, Frank Melchior, 2006, "A Survey of Large High-Resolution Display Technologies, Techniques, and Applications", Proceedings of the IEEE Virtual Reality Conference (VR 2006), 223-236.
- S. Molnar, M. Cox, D. Ellsworth, H. Fuchs, 1994, "A Sorting Classification of Parallel Rendering", IEEE Computer Graphics and Applications, 14(4), 23-32.
- □ Ed Angel, 2006, Interactive Computer Graphics: A Top-Down Approach with OpenGL, Fourth Edition, Addison-Wesley 2006
- Amit Chourasia, Steve Cutchin, Yifeng Cui, Reagan W. Moore, Kim Olsen, Steven M. Day, J. Bernard Minster, Philip Maechling, and Thomas H. Jordan, 2007, "Visual Insights into High-Resolution Earthquake Simulations", *IEEE Computer Graphics and Applications*, 27(5), 28-34
- ☐ Lighthouse3D, http://www.lighthouse3d.com/
- DeFanti, T.A., Dawe, G., Sandin, D.J., Schulze, J.P., Otto, P., Girado, J., Kuester, F., Smarr, L., Rao, R. (2009). TheStarCAVE, a Third-Generation CAVE and Virtual Reality OptlPortal. To appear in Future Generation Computer Systems, Volume 25(2), Elsevier, February 2009, pp. 169-178. (pdf)

55 / 61 56 / 61